HOMOLOGY SPHERES

BY
E. DROR

ABSTRACT

An analysis of the homotopy type of spaces with the same homology as the
sphere S” (n > 1) is given. All such spaces are constructed by means of al-
gebraic “invariants” and a certain homology decomposition tower.

1. Introduction

In a previous paper [4] a homotopy classification of spaces with vanishing in-
tegral homology was introduced. In general we propose to investigate the following
homotopy theoretical question: Given a C.W. complex B, what can be said about
maps f: X - B which induce an isomorphism: H.(f, M): H{(X, M) - H.(B, M)
where M is a module over n; B of certain type, e.g. trivial module, R-module, etc.

In the present paper we take B to be the n-sphere S” (n > 1). The space Z" will
be called a homology n-sphere if
. Oifi#n
HELZ) =~ { Zifi=n.

The integral homology functor H.(,Z) will be denoted by H.. A map X 4B
with H.f an isomorphism will be called an H-isomorphism. Note that every
homology sphere (H-sphere) X" maps to the sphere S” by a map f:Z"— S"
which is an H-isomorphism. In fact, Z %" (see [ 1]) has the homotopy type of S”.

Although we state all the results for the integral coefficient case, it can be seen
that many of them generalize to other coefficient groups.

By investigating all homology spheres, i.e. maps £"— S" with acyclic fibre 4,
one in fact analyses the homotopy type of Aut A, the space of self equivalences of
an arbitrary acyclic space A. This goes a long way toward classifying all fibrations
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A - X - X,,1.e.allmaps f: X — X, such that Hu(f, Z(n, X)) is an isomorphism.
A typical result in this direction is:

THEOREM. Let A be an acyclic space such that n=m A acts trivially on n,A

for j > 1. Then one has a fibration
Auty A—- A— K(nje,1)
where Aut, A is the connected component of Aut A, and c is the center of n.

We analyse the homotopy type of a given H-sphere I by constructing certain
Postnikov-like decomposition of Z" into a tower of H-spheres. This tower yields
“invariants” by means of which one can construct, up to homotopy, all the
homology spheres. Certain ‘‘geometric’” applications and examples are given: an
analysis of the Poincaré 3-sphere, and characterization of the (r~ 1)-homotopy
type of 2(r + 1)-manifolds which are H-spheres.

Although the nature of the results and proofs is not combinatorial, we work in
the category of pointed simplicial Kan complexes since it is more convenient.
A general familiarity with [4] is assumed.

1.1. ORGANIZATION OF THE PAPER. In Section 2 we define certain decomposition
and the invariants associated with it. We state the main results in Section 3. In
Sections 4 and 5 we prove the existence and uniqueness of the homology de-
composition tower and prove certain useful properties of the invariants. The main
results are then proved in Sections 6 and 7. Section 8 is a supplementary section
which renders a certain construction more accessible. Section 9 closes the paper
with some geometric examples and applications.

2. Homotopy invariants for homology n-spheres (n > 1)

2.1. Let I be a homology n-sphere n > 1. By a homology decomposition of
I" (or H-decomposition) we mean a tower of fibrations

lim E,=E - ...EE5E_,...-E,
*
where E, is a simply connected n-sphere, i.e. E; ~ S", together with a (weak)
homotopy equivalence e:X"- E7,, which satisfies the following conditions
(compare [4, 1.1]):
i) All the maps p, are homology isomorphisms, in particular E, is a homology
n-sphere.
ii) The k-stage of X" namely E,, is j-simple for all j > k, i.e., n E, has trivial
action of =;E, for j>k.
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iii) The fibre of E, —» E,_, is (k — 1)-connected.

2.2. UNIQUENESS THEOREM. Let 3" be an H-sphere, and let {EL} i =1,2 be
two homology decompositions of X", Then there exist, in a natural way, a third
H-decomposition {E,} and a natural homotopy equivalence E, — E{’, 1 < k < o,
i =1,2, which commute with all the maps in the towers.

2.3. ExiSTENCE THEOREM. Let X" be an H-sphere n > 1. Then there exists, in

a natural way, an H-decomposition

n n opr M n
T2y = Lo 2

2.4. RemArRk. The main advantage of the H-decomposition 2.3 over the
usual Postnikov-Moore decomposition of the map X” — S” is that the tower 2.3,
unlike the Moore-Postnikov tower, supplies natural ‘‘invariants’’ of H-spheres, by
means of which all H-decomposition towers and thus all H-spheres can be con-
structed.

2.5. THE INvARIANTS. We now proceed to define three sets of invariants
associated with the H-decomposition tower (2.3):

(i) For each H-sphere 2", let 4, be the fibre of

X _, oy~ 8"

unless n =2, in which case A,, will denote the fibre of =2 -»X2 ~ 5%, Notice
that A, isan acyclic space. In fact, 4, is an (n — 2)-stage, i.e., m; A, acts trivially
on n; A, for j > n— 2 (unless n — 2, in which case 4, is a simple acyclic space
[4]). Thus, for every choice of a generator ¢ for 1,Zq ~ Z. the boundary maps of
Ay — X" Zg will give an element n(Z") e 7, _; 4. We regard ¢ as an element of
the multiplicative group { + 1} which is the group of orientations of £;. Thus our
first invariant is #,(Z") (this is the cross-section obstruction of Zj_,—S").

(ii) We denote by «, for k = 1 the homotopy groups m, (fibre of p,) regarded as
7, Zp = 7, L] modules, whenever k> 1. The modules o, play in the H-decomposition
tower the same role played by the homotopy groups in the usual Postnikov tower.
Note the a,’s are functorial in ", and thus may be denoted o, X" = o, Z;. As we
shall see later, the following property completely characterizes o, :

2.6. ProPOSITION. For all k=2
Hy(n, o) =~ H (n,0,) = 0

whereas
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H (o)) > Hy(ary) ~ 0.

Here n denotes n, 3] = m, Z".

(iii) The last set of “‘invariants’’ are the k-‘‘invariants’ of the tower (Zj). It
follows from 2.1 that there is exactly one obstruction to a cross-section of
T 2 yr |, this obstruction is an element of H**!(Zj_,,«) (cohomology with
twisted coefficients). This ““homology-k-invariant” will be denoted by K**'(p,).

3. Construction of H-decomposition towers

We now state the main theorems in terms of the invariants defined above. The
theorems describe how to construct all possible towers inductively. Luckily, for
the homology n-sphere we can start the induction from n — 2, rather than from 1
Thus we first construct all possible (n — 2)-stages in terms of the invariant # (in
case n = 2, we construct all 1-stages). Then we can proceed to construct the higher
stages using the modules «, and cohomology with local coefficients.

3.1. THEOREM. The H-spheres %" (n > 2) which are j-simple for j > n—2 are
classified by pairs (4,-5,n) as follows:

i) For any (n — 2)-stage acyclic space A,_, and for any elementnoen,_ 1 A,
there exist a homology n-sphere £" and a homotopy equivalence A,_, - F
where F is the fibre of T* =33, and e, (ny) =1, ZVen,_,F.

ii) Any two (n — 2)-stages T" and 'X" are homotopy equivalent iff F ~'F
where F, 'F are the corresponding acyclic fibres and there exists an isomorphism
Ry Fom,_{ 'F which carries n,(Z" to n('T".

3.2. THEOREM. The simple homology 2-spheres L* (i.e. m, acts trivially on
n;X2 for all j > 1) are classified by the group «;, and the center of a, (denoted
by cay) as follows:

i) For each H-sphere 2, ,(X?) lies in cay. Two simple H-spheres £* and '%?
are homotopy equivalent iff «,X*> = a, 'S? and there exists an isomorphism
cocl(Zz)—:;cocl(’Zz) which carries n(X?) to n('x?).

ii) For any group « which satisfies H,a =~ H,a =0 and any element nge ca
there exists, in a natural way, a homology sphere ¥? with 0,22 =a and
7(Z?) = 1o € ca, X2

REMARK. Theorems 3.1 and 3.2 in fact classify fibrations over the n-sphere S”
with certain acyclic spaces as fibres. Thus one may consider them as stating the
homotopy groups of the space of self-equivalences of 4,, a k-stage acyclic space.
For more details see 6.3.
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We now continue to construct the H-decomposition tower over L fork = n — 2

(or k = 1if n = 2). Given an H-sphere Z; which is a k-stage, we have the following
classification theorem:

0]

3.5. UNIQuENESS. Any two (k + 1)-stages E,(fll&tal T (i=1,2) are fibre
homotopy equivalent [3] if and only if there exists an isomorphism of m, Ty
groups o,y Et 1 = 044 q EZ, 1 which carries h**2(p) to W**2(p?).

3.6. EXiSTENCE. With notation as above given any m, Tp-module « with
Hy(n,0) ~ Hy(n,0) =0 (n =, 2§ and any (twisted) cocycle ¢**2e Z¥* %2}, a),
there exists a map p,.+: Egy — Xy which is a homology isomorphism and such
that Ey,, is a (k + 1)-stage, w,,., E? ., ~ o as m-modules and c**? e B**%(p, ).

3.7. H-SpHERES AND AcycCLIC SPACES. There is an intimate connection between
the analysis of H-spheres presented here and the analysis of acyclic spaces given in
[4]. In fact one hasin Fig. 1 a diagram which is homotopy commutative. Thus the

F}H/ Fhat

n n
Ak+/ Z/w/
1 | |
A % 5"
Fig. 1

modules «, are the same modules o, as in [4]. In the case of H-spheres one has
more invariants which determine the precise nature of the ‘‘twist’” of AZ" over S".
Let us remark that Theorem 3.6 is somewhat weaker than the corresponding

Theorem 1.4(b) in [4], since the fibre map E;,, —Z; is natural only up to
homotopy.

4. Proofs of Theorems 2.2 and 2.3

Recall the functor Z X, the nilpotent completion of X as defined by Bousfield
and Kan [1]. If H,X =~ 0 then the map X — Z X is an H-isomorphism and Z X

is simply connected. In order to define I’ we start with the Moore-Postnikov
decomposition of the map X" — Z_Z":

I PI o P Tt ... > Z M
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Define L= P, E"X z,,p, 50 Z 2" i.€. Z; is the pull-back in Fig 2. The map g, is
defined as follows:

;
g~ 7
hk N kT _’Zm;__n
1
IR
s ez s

Fig. 2

9i(0) = (fi(0), i(0)).
Note that Zf, is a fibre map since f; is; thus Z; = {(a,b) € P,Z" X Z 2" | iy(0)
= Z,fu(b)}. Now iy is an H-isomorphism and Z,P,Z" is simply connected; thus
i is also an H-isomorphism, and since i is a homology isomorphism so is g,.
Since the whole construction is natural one gets a tower

)X Y SR . 2 3.

in which all maps are homology isomorphisms. We must show that properties 2.1
(i) and (iii) hold. But this is immediate from the corresponding properties of the
acyclic decomposition, since AP, Z" is the fibre of I} = Z X"; see Fig. 1 where A
is as in [4].

ProcF oF UNIQUENESS. Using the functorial tower one gets Fig. 3. Then E,

(1) n )
z z
Zk \ / k\ / k

(1) 2)

(") (]

Fig. 3

may be taken as the “total pull-back.” Since the maps E, —» E,’are homology
isomorphisms and induce isomorphism on 7z, for j < k (compare [4, Th. 2.1 (iii),

(iv)] and since the spaces are j-simple for j > k, these maps are homotopy
equivalent.

4.1. REMARK. The construction given above is not a step-by-step construction
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as given in [4]. In Section 8 we give another, inductive construction which shows
exactly what homotopy groups and k-invariants come into the construction of
X; out of P.X".

5. The properties of the invariants
Here we prove two useful propositions:

5.1. LemMA Let 2 be a simple H-2-sphere. Then n(X¥)ecn, AL}

Proor. Note that AZ? is the fibre of 22— Z L2~ S2. But since £ is j-simple
for j > 1 so is AZZ by [4, Th. 2.1]; thus by the [4, Uniqueness Theorem 4.2] the
natural map A = AX2— AK(n; 22 1) is a homotopy equivalence. Thus one has
in Fig. 4 a diagram of fibrations which, in homotopy, gives the exact ladder
depicted in Fig. 5.

2 . 2

A > }_', > ZwZ,
| | |
A————K(r,1) Z, K(m 1)

Fig. 4
Z *77,4, > 77 > O
| u I 3
Hym ——= mA ———=17 '

Fig. 5

But n is perfect and =, A4 is the universal central extension of = by H,n (compare
[5D. Thus #, in the center of n,A.

ProOF OF PROPOSITION 2.6, This Proposition follows immediately from the
Serre spectral sequence for the fibration

F-X 55,
for k = 2. Since H.p, is an isomorphism, and F, is (k — 1)-connected, one gets
HZ ., mF,)~0 for i =0,1 which proves the proposition. As for k =1, note
that F, is an acyclic space; in fact, it is A(a,,1). Thus H,a, = Hyx, = 0.
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6. The automorphism of acyclic spaces
For a given (n- 2)-stage acyclic space 4,_,, (or a given A, = A(x;; 1) if
n = 2) Theorems 3.1 and 3.2 classify fibrations
Ay S
Aoy, 1) -T2 82
thus in fact computing 7; Aut 4,_, for j = n — 1 and =; Aut A(x,, 1) forall j 2 0.

Here Aut X denotes the space of self homotopy equivalences of X. We start with
the simpler case 3.2.

6.1. PROOF OF 3.2, We start with 3.2 (ii). Let Ha =0 (i=1,2) and et ¢ = ca
be the center of a. Given an element 77ec, we construct a simple homology
2-sphere as follows: £2 is the pull-back in Fig. 6 in which 7: §2 —» K* denotes the
homotopy element which corresponds to # under the isomorphism

n2K+ f) HzK* f) HzK:C.

2/2(;7/ —————————— > Klasel)=K
* l
\ —
5% 1 -2 _Kla/c,l)=k*

Fig. 6

The first two isomorphisms follow from the general properties of Z., for spaces
with perfect fundamental groups. Now, one has an exact sequence 0 —c—
— afe— 1. Thus « /c is perfect. The isomorphism H,K = H,(a/c) > c is given by
the corresponding exact sequence in homology

Hyx—Hy(afc) 5 Hyajc,c)— Ha

since Hya =0 for i = 1,2 and H(a/c,c) = ¢ since the extension is central. Since
the universal central extension of o/c is unique, it must be o itself and thus
oy TH) ~ Clearly 5, £3(i) = 7. This proves (ii). To prove (i), the first claim is
Lemma 5.1. As for the rest of (i), note that n, X7 is always a quotient of «; Z2 by
the cyclic subgroup generated by an element of cx;: Z — a; — 1; £2 - 0 is exact,
Thus one gets «, /ca, = =, Jen;. Now given a homology sphere 2 ope constructs
the map 22 - K(a/c) and thus Fig. 7 which is clearly a pull-back diagram. Under
the assumption one can construct a self equivalence
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ZcoK(al /C, 1) - ZooK(“l /C, 1)
which carries 7(Z?) to 5('X?), thus proving (i).

)_‘,2 —> K(og/cay)
s?— 1t 7 Ktarea)

Fig. 7

6.2. ProOF. OF 3.1. First note that 3.1 states for homology n-spheres n > 2,
a weaker result than Theorem 3.2 states for H — 2-spheres. The proof proceeds
along the same line except that for K* one uses the complex Z, P, ,4,_,
~Z P, ,X" since P,_,A, 5~ P, ,Z" Note that it follows from [4] that
AP,_,A,_, ~ A,_,. Thus for each (n — 2)-stage I" with fibre 4, , over X, one
has a pull-back diagram, Fig. 8, derived from the Z-completion of map X
= P,_ %"

’Tn-z A' '?”'2
z" £ K
| }
skz " > 2, B, I =K
Fig. 8

The main observation is: n, K* ~ H, K* = m,_{ A,_,. See 2.2 and 3.2 [4]. We
leave it to the reader to check that only X" as above can be derived as a pull-back
from K*, in a unique fashion up to Aut(z,K*). Note that for any acyclic space X,
H,.1P.X~0 and thus Z P, X is (r + 1)-connected.

6.3. THE AUTOMORPHISMS OF A4,. An immediate corollary to Theorems 3.1 and
3.2 is:

COROLLARY. Let A, be anacyclic space in which m A, acts trivially on m;4,,
0=n<j. Let AutA, be the space of self homotopy equivalences of A. Then
if n > 1, there is map Aut A4, —» A, which induces isomorphism on w; for
allj>n. If n=1 (i.e. A, = A(0,,1)), the canonical acyclic space associated
with ¢ = m,A(e,1) for which Ho =0, (i = 1,2): Aut A(s,1) is determined by a
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pull-back diagram in Fig. 9, where Wo is the Eilenberg-MacLane classifying
space K(o,1).

Aut A(0;!) ————— AUt Wor

i

Ala;l) — Wor
Fig. 9

Note that one has a fibration K(ca,1) - Aut Wo — Aut o, where co is the
center of ¢. Thus n; Aut A(, 1)~ co and 7;AutA(s,1) » n; A(s, 1) for all j > 1.
The above fibre square gives strong ground to the feeling that the acyclic space
A(o,1) is the “‘correct” dual to the aspherical space K(o,1). The homotopy
groups of A(a, 1) were defined by some authors to be the higher algebraic K-groups
of aring R, when o is taken to be the Steinberg group St (R) of the ring R (compare
Milnor [3], Quillen and S. Gersten). This isin i ne with suggestions of Swan and
Bass [6] to define the higher K, by successively annihilating higher homology
groups of St(R). Now let K* = Z K(GL(R),1). It follows from Corollary 6.3 that
the universal cover K* is homotopy equivalent to WAutA(St(R),1). Thus the
higher K-groups K, for n =2 as defined above, are the groups of homology
n-sphere £* with o,Z" ~ St(R).

7. Construction of the (k+1)-stage for k=n—2

We now prove the existence Theorem 3.6. The uniqueness will follow easily.
Given a n = m;Z}-module «, and given a k-stage X with k= n—2 (or k21
if n = 2), assume that H,(r,«) = 0 for i = 0, 1. Let the cocycle C**2 be represented
by the map in Fig. 10 where ¢: 7 —Auta is the given action and where

5" — Lo,k +2)

k \
K(m1i)
Fig. 10

L¢(a,n + 1) is a classifying space for cohomology with twisted ¢ coefficient, (see
{4, 5.17). Then by pulling back the space of “‘paths over K(z,1)”” one gets a
fibration
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K,k +1)>E

I
I
such that the natural action is ¢, and c**2 belongs to the obstruction class in
H"*2(Z" &), to a cross section of p’.
We now want to turn E into a (k + 1)-stage homology n-sphere. This is done by

successively annihilating the higher homology of E. Note that for each fibration
like p’ with a fibre Eilenberg-MacLane n-space n > 1, one has an exact sequence

H(n,0) > Hy,E> Hyyy B> Ho(n,0) > Hyyy E- Hyy y B0 (B=1Z)).

Thus since H(n,0) = 0 we get H; E> H;B for all j < k + 2, but since k 2 n + 2,
we see that E is an H — n-sphere in dim £ k + 2. Thus H**! (E,H,;E) ~ Hom
(H,+:E,H,;E) for k+2—nz=i=1 since Ext(H,y;E,H,;E)x0 (i=1)
because H,E ~ Z. Thus there is map E — K(H,.3E, k + 3) which corresponds to
the identity map in H**3(E,H,,,E)~ Hom(H,:E,H; ;E'). This map is
moreover unique up to homotopy. Define E;, 5 to be the fibre of that map; then
it is easy to check that E; , ; has the same homology of the n-sphere in dim < k + 3.
Thus one can define a tower E; over E, and by taking Eg,, to belim_E;, one gets

Pr+1

a homology isomorphism E,, . RLSAE 38

Clearly ¢**2 € h*+2(p, , ;). It remains to be proved that o, ., E¢,, ~ o as a n-
group. But this follows by comparing E;,, —»X; with the map 4 /., > 4 Z;
via Fig. 1, and applying the existence theorem 1.4 in [4].

8. The relative acyclic functor

In constructing L, in the above section, we in fact turned the map X" — P, X"
into a homology isomorphism X* — Z¢, using the completion functor Z . Here we
present a simpler construction which does not depend on Z, is more explicit
and enables one to gain hold on n.Zj.

8.1. TueoREM. Let X be a connected space with H{X ~0. Let X > Y be a
map into another connected space Y. Then there exists, in a natural way, a
commutative diagram, Fig. 11, with the following properties (compare [4, Th.
2.1]:

1) The map H.f is an isomorphism.
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f

X AY
Y

Fig. 11

ii) The map AY-Y is universal with respect to maps X & KLY, in
which H.g is an isomorphism (i.e., j factors uniquely through i).

iif) The functor A preserves fibre maps, and preserves the j-simplicity
of the space (i.e., if Y is j-simple so is AY).

Proor. Let Y; - Y be the covering map which corresponds to Pm,Y, the
maximal perfect subgroup of x,Y. Then one has a unique lifting X 5'Y, of s.
Clearly, H, f; is an isomorphism of the trivial groups. Assume by induction that
Ja: X — Y, has been defined and H;f, is an isomorphism for j < n. Then we define
fa: X = Y, by the pull-back diagram, Fig. 12. Here Z denotes the reduced free

!
/),’7 ————— "/]/?HI(Z)//?/ZX/
7
’;)l// |
Ve |
< ]
7
, \/
X — ¥ > Ry (207 2X)

Fig. 12

abelian group functor, P, , the (n+ 1)-stage of the Postnikov tower and A the sim-
plicial path functor. Note that since X maps to the base point in P,,,(ZY,/ZX),
the map f, lifts to £, by: fi(6) = (f,(6), 4).

We now claim that H;f, is an isomorphism for j < n and an epimorphism for
j=n+ 1. To see this note that P,,, (ZY,/ZX) has the homotopy type of
K = K(Hy+1(Y,, X), n + 1). Thus for the fibration ¥, » Y, — K one gets in Fig. 13
an exact ladder, which proves our claim.

Fpas X = Hpuy g == My, (1, X)—0

Hn+/';7 l”*" l”*”

0 HI7+/);7 Hﬂfl);7 Hﬂ*l ();I’X/
Fig. 13
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/)77-———*/16’+2 2y, /ZX)
|
/
’77+7// :
/ |
/ vI s
X——~>>77-——>/,’,+2 (Zy, /ZX)

Fig. 14

One proceeds now to define Y, by the pull-back diagram, Fig. 14, and prove
by similar argument that H;f,, is an isomorphism for j < n + 1. Now the space
AY is defined as inverse limit

AY = lim Y,
n

Clearly A has all the desired properties (compare [4, Th. 2.1]).
9. Geometrical examples

We start with the well-known Poincaré H-sphere PS*. This sphere can be
derived as a space of orbits of the bi-icosahedral group I* [ 8] acting freely on the
3-sphere, or alternatively as SO(3) /I where I is the icosahedral group. One may
wonder what is the H-decomposition of 3. This turns out to be a simple question
since the universal cover of X*is S3.

9.1. PROPOSITION. Let I* (n = 2) be any H-sphere. If the universal cover of
%" is S" then XX is a simple H-sphere, i.e. L* ~ X%,

PrOOF. One examines Fig. 15 in which S* denotes the space Z X" which has
the homotopy type of the n-sphere, 7 = n;X". Since Z ,K(=n,1) is simply connected,
and n—Aut H.S" is trivial, $"— F must be an H-isomorphism and thus equivalence,
Thus A’ 5 AK(m, 1), which proves the claim. (A denotes the acyclic function [4])

A Af((ﬂ, 1)
}
s 5" K(m,1)
} | n |
=S Z K1)

Fig. 15

Now, H;I* & Z,,,, the cyclic group of order 120 (since |I*|= 120). Thus
n,A(I*,1) = Z,,, and clearly n(PS*) must be a generator. Thus one has:
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9.2. COROLLARY. Let I* act freely on S3. Then S3 [I*e Z,=group of units of

ZIZO'

9.3 ManiroLps. The fundamental group of a closed, compact, smooth n-
manifold (which is an) H-sphere for n = 4 was characterized by Kervaire to be
any finitely related group G with H,G=H,G=0. It is natural to seek a characteriza-
tion of the higher homotopy groups of n-manifolds which are H-spheres. Likewise,
Kervaire characterized the possible fundamental group of a higher knot. Note
that the complement of a knot is a homology 1-sphere (an H-circle). C.T.C. Wall
observed [7] that the homotopy type of the complement of a knot: S™-2 - ™
is characterized by a purely homotopy theoretical property, up to the middle
dimension:

9.4. TueoreM (Wall, Kervaire). Let (K, L) be a C.W. pair of dimension r and
with finite skeletons, such that K =LUse* and K is contractible. Then if
m > 2r — 1, m = 5 there is a smooth imbedding of S™-2 in S™, with complement
C, and an (m — r)-connected map ¥: C— L.

Notice that L is an almost arbitrary homology 1-sphere of dimension r, the
only restrictions are finiteness of skeletons and that 7, L has an element « whose
conjugates generate the whole group, (symbolically w(z;L) = 1).

Similarly, one can easily prove:

9.5. PROPOSITION. Let A be a finite C.W. complex of dimension r > 2 such that
H.A ~0. Then there is a smooth closed manifold M"* for n > 2r + 1, which is
an H — n-sphere and an (r — 1)-equivalence A - M™.

Thus one can obtain knots and manifolds which are H-spheres by constructing
certain finite complexes. In previous papers we showed how to construct all
possible acyclic space. However, every (possibly infinite dimensional) locally
finite acyclic space gives a finite one as follows:

9.6. PROPOSITION. Let A be an acyclic C.W. complex with finite skeletons
A, (d 2 0). Then for all d = 2 there is a finite acyclic complex F and a (d—1)-

connected map A;— F.

Proor. The d-skeleton A, has vanishing homology through dimension (d — 1);
in general, H; 4, # 0 but one always has that the map 4, % H A, is surjective.
To see this, note that coker (h) = H,P,_,A,, where P,_; 4,is the (d — 1)-Postnikov
stage of A,. This is a well-known corollary to the Postnikov tower. Now this
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general formula for the cokernel of a Hurewicz map implies that H,P,_,4 ~ 0.
But clearly, P,_ A~ P,_,A,; We thus can annihilate H,4, by adding (d + 1)-cells
to get F=4,0 FEARIURS with H.F ~ 0. F is certainly finite, and has the
same (d — 1)-type as A.

Propositions 9.5 and 9.6 together with the classification of acyclic spaces given

d+1
.e+

in [4], combine to gensralize the Kervaire theorem about possible fundamental
groups of a manifold-H-sphere, and to give complete classification of their
homotopy type “‘up to the middle dimension’’.

Proposition 9.4 can likewise be used to construct pairs (K, L) as in Proposition
8.4, for which the fibre of L— S’, the given H-isomorphism, is F. One simply
takes a Kervaire knot-group, i.e. a finitely presented group G with H,G=2Z,
H,G ~ 0 and w(G) = 1 for which H[G,G] = 0 where [G,G] is the commutator
subgroup of G. Then H,[G G] =0. Thus one can take arbitrary 4 with n,4
~ [G,G] and construct the mapping torus of a map 4 — A4 with induce on n, the
natural action of Z on [G, G]. Thus, up to the middle dimension one can weaken
the Kervaire assumption n,K = Z to read [n,, 7] is perfect. A more extensive
discussion of the homology circle problem will be given in a future paper.
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