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ABSTRACT 

An analysis of the homotopy type of spaces with the same homology as the 
sphere S n (n > 1) is given. All such spaces are constructed by means of al- 
gebraic "invariants" and a certain homology decomposition tower. 

1. Introduction 

In a previous paper [4] a homotopy classification of spaces with vanishing in- 

tegral homology was introduced. In general we propose to investigate the following 

homotopy theoretical question: Given a C.W. complex B, what can be said about 

maps f :  X -* B which induce an isomorphism: H.(f ,M):  H,(X,M) ~ H.(B,M) 
where M is a module over zqB of certain type, e.g. trivial module, R-module, etc. 

In the present paper we take B to be the n-sphere S" (n > 1). The space Z" will 

be called a homology n-sphere if 

0 i f i 4 n  
/"Ti(En' Z)  ~ { Z i f i = n .  

The integral homology functor H.( ,Z)  will be denoted by H,. A map X ~ B 

with H,f  an isomorphism will be called an H-isomorphism. Note that every 

homology sphere (H-sphere) Z" maps to the sphere S" by a map f "  Z"-~ S n 
which is an H-isomorphism. In fact, Z~Z ~ (see [1]) has the homotopy type of S". 

Although we state all the results for the integral coefficient case, it can be seen 

that many of them generalize to other coefficient groups. 

By investigating all homology spheres, i.e. maps Z " ~  S" with acyclic fibre A, 

one in fact analyses the homotopy type of Aut A, the space of self equivalences of 

an arbitrary acyclic space A. This goes a long way toward classifying all fibrations 
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A ~ X -~ Xo, i.e. all maps f :  X ~ Xo such that H,(f,  Z(nlX0) ) is an isomorphism. 

A typical result in this direction is: 

THEOREM. Let A be an acyclic space such that n = rqA acts trivially on njA 

for j > 1. Then one has a fibration 

Aut o A ~ A - - , K ( n ] c , 1 )  

where Auto A is the connected component of Aut A, and c is the center of n. 

We analyse the homotopy type of a given H-sphere Z" by constructing certain 

Postnikov-like decomposition of Z" into a tower of H-spheres. This tower yields 

"invariants" by means of whick one can construct, up to homotopy, all the 

homology spheres. Certain "geometric" applications and examples are given: an 

analysis of the Poincar6 3-sphere. and characterization of the ( r -  1)-homotopy 

type of 2(r + 1)-manifolds which are H-spheres. 

Although the nature of the results and proofs is not combinatorial, we work in 

the category of pointed simplicial Kan complexes since it is more convenient. 

A general familiarity with [4] is assumed. 

1.1. ORGANIZATION OF THE PAPER. In Section 2 we define certain decomposition 

and the invariants associated with it. We state the main results in Section 3. In 

Sections 4 and 5 we prove the existence and uniqueness of the homology de- 

composition tower and prove certain useful properties of the invariants. The main 

results are then proved in Sections 6 and 7. Section 8 is a supplementary section 

which renders a certain construction more accessible. Section 9 closes the paper 

with some geometric examples and applications. 

2. Homotopy invariants for homology n-spheres (n > 1) 

2.1. Let E ~ be a homology n-sphere n > 1. By a homology decomposition of 

Y: (or H-decomposition) we mean a tower of fibrations 

lira Ek = Eoo o . . . E k  ~ Ek_I... ~ E o 

where Eo is a simply connected n-sphere, i.e. E o ~ S n, together with a (weak) 

homotopy equivalence e:Y:-~E~,  which satisfies the following conditions 

(compare [4, 1.1]): 

i) All the maps Pk are homology isomorphisms, in particular E k is a homology 

n-sphere. 

ii) The k-stage of E n, namely Ek, is j-simple for all j > k, i.e., n~Ek has trivial 

action of njgk for j > k. 
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iii) The fibre of E k ~ Ek-  1 is (k - 1)-connected. 

2.2. UNIQUENESS THEOREM. Let  Z, n be an H-sphere, and let {E~} i = 1,2 be 

two homology decompositions o f  ZL Then  there exist, in a natural  way, a third 

H-decomposi t ion (Ek} and a natural homotopy equivalence E k ~ E(k ~, 1 < k < 0% 

i = 1,2, which commute  with all the maps  in the towers. 

2.3. EXISTENCE THEOREM. Let  Z n be an H-sphere n > 1. Then  there exists, in 

a natural  way,  an H-decomposit ion 

l l  II n 

Zoo --" . .. Zk -~ Y~k-1 ~ . . . Zo. 

2.4. REMARK. The main advantage of the H-decomposition 2.3 over the 

usual Postnikov-Moore decomposition of the map Z~ ~ S" is that the tower 2.3, 

unlike the Moore-Postnikov tower, supplies natural "invariants" of H-spheres, by 

means of which all H-decomposition towers and thus all//-spheres can be con- 

structed. 

2.5. THE INVARIANTS. We now proceed to define three sets of invariants 

associated with the H-decomposition tower (2.3): 

(i) For each H-sphere Z n, let Ac~ J be the fibre of 

~ 

unless n = 2, in which case A(2~ will denote the fibre of Z~--,Z~ ~ S 2. Notice 

that A(, is an acyclic space. In fact, Ac~ ) is an (n - 2)-stage, i.e., rq A(,~ acts trivially 

on nj A(~) for j > n - 2 (unless n - 2, in which case Atn) is a simple acyclic space 

[4]). Thus, for every choice of a generator e for ~ zr,Zo ~, Z. the boundary maps of 

A(~) ~ ~ I:~ will give an element th(Z ~) e re,_ ~ Acn ~. We regard e as an element of 

the multiplicative group { _ 1} which is the group of orientations of Z~. Thus our 

first invariant is rh(Z ~) (this is the cross-section obstruction of Z~_2~S").  

(ii) We denote by ak for k > 1 the homotopy groups rc k (fibre of Pk) regarded as 

rq Z~ = ~ Z~ modules, whenever k > 1. The modules ~k play in the H-decomposition 

tower the same role played by the homotopy groups in the usual Postnikov tower. 

Note the ak'S are functorial in 5: ~, and thus may be denoted ak E" = akZT,. AS we 

shall see later, the following property completely characterizes ak: 

2.6. PROPOSITION. For all k > 2 

Ho(rC,%) ~ Hl(n,~k) ~ 0 

whereas 
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Hi(oq) -~ H2(~i) - O. 

Here 7~ denotes 7 h Z] = 7q Z". 

(iii) The last set of "invariants" are the k-"invariants" of the tower (27,). It 

follows from 2.1 that there is exactly one obstruction to a cross-section of  

Y~, ~ Z~_ a, this obstruction is an element of H k+ l(ZT,_ a, 0c~) (cohomology with 

twisted coefficients). This "homology-k-invariant" will be denoted by hk+1(pk). 

3. Construction of H-decomposition towers 

We now state the main theorems in terms of the invariants defined above. The 

theorems describe how to construct all possible towers inductively. Luckily, for 

the homology n-sphere we can start the induction from n - 2, rather than from 1 

Thus we first construct all possible (n - 2)-stages in terms of the invariant t / ( in  

case n = 2, we construct all 1-stages). Then we can proceed to construct the higher 

stages using the modules ~ and cohomology with local coefficients. 

3.1. THEOREM. The H-spheres Z" (n > 2) which are j-simple for j > n - 2 are 

classified by pairs (A,_2,~/) as follows: 

i) For any (n - 2)-stage acyclic space A,_ 2 and for any element qo e ~r,_ a A , -  2 

there exist a homology n-sphere Z" and a homotopy equivalence A,_ 2 ~ F 

where F is the fibre of Y." ~ Zo", and e~(qo ) = q~(E") e ~,_ 1F. 

ii) Any two ( n -  2)-stages Z" and 'Z" are homotopy equivalent iff F ~ 'F 

where F, 'F are the corresponding acyclic fibres and there exists an isomorphism 

n._l  F - - ,n ,_ l  'F which carries ~7~(Z") to r/('Z"). 

3.2. THEOREM. The simple homology 2-spheres y2 (i.e. na acts trivially on 

njZ 2 for all j > 1) are classified by the group el, and the center of e x (denoted 

by c~x) as follows: 

i) For each H-sphere E 2, rh(Z 2) lies in Cex. Two simple H-spheres Z 2 and '2  2 

are homotopy equivalent iff ~xxZ 2 ~ e t  'Z 2 and there exists an isomorphism 

C~1(2 2) -'~ CO~l(t2 2) which carries r/(Z 2) to r/('Y~2). 

ii) For any group ~ which satisfies Hl~ ~-H2~t ~-0 and any element qo e co~ 

there exists, in a natural way, a homology sphere 2 2 with gl]~ 2 =t~ and 

~/(22) = '70 e cal2 2. 

REMARK. Theorems 3.1 and 3.2 in fact classify fibrations over the n-sphere S" 

with certain acyclic spaces as fibres. Thus one may consider them as stating the 

homotopy groups of the space of self-equivalences of Ak, a k-stage acyclic space. 

For more details see 6.3. 
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We now continue to construct the H-decomposition tower over Z~ for k > n - 2 

(or k > 1 if n = 2). Given an H-sphere Z~ which is a k-stage, we have the following 

classification theorem: 

3.5. UNIQUENESS. Any two (k + 1)-stages ~(o P~'~ t~k+~-- Zk ( i =  1,2) are fibre 

homotopy equivalent [3] i f  and only i f  there exists an isomorphism o f  ~1 Zk" 
t ~ a  

groups ~k+l E~+I -% ~k+l E2+1 which carries hk+Z(p 1) to hk+Z(p2). 

3.6. EXISTENCE. With notation as above given any 7q Z~-module ot with 

Ho(rC,~ ) ~ H10z,~ ) = 0 (Tz = rq E~,) and any (twisted) cocycle ck+2ezR+2(Z~,~), 

there exists a map Pk+ I : E~+ I --}Z~ which is a homology isomorphism and such 

that E~+ 1 is a (k + 1)-stage, ~k+l E~+I "~ o~ as n-modules and ck+2e hk+Z(pk+l). 

3.7. H-SPI-IERES AND ACYCLIC SPACES. There is an intimate connection between 

the analysis of H-spheres presented here and the analysis of acyclic spaces given in 

[4]. In fact one has in Fig. 1 a diagram which is homotopy commutative. Thus the 

N 

k + l ~- ~k + l 

=__ E n 
Ak+l k+ I 

A k 

Fig. 1 

:_ S n 

II 
S "n 

modules ~k are the same modules c~ k as in [4]. In the case of H-spheres one has 

more invariants which determine the precise nature of the " twist"  of AE n over S n. 

Let us remark that Theorem 3.6 is somewhat weaker than the corresponding 

Theorem 1.4(b) in [4], since the fibre map ET,+~ ~ E ~  is natural only up to 

homotopy. 

4. Proofs of Theorems 2.2 and 2.3 

Recall the functor ZooX, the nilpotent completion of X as defined by Bousfield 

and Kan [1]. I f H I X  ~ 0 then the map X --} Zo~X is an H-isomorphism and Z| 

is simply connected. In order to define Z :  we start with the Moore-Postnikov 

decomposition of the map Z" ~ ZooZ n: 

Z~ "-* Pk Z~ -'* Pk- 1Z" ~ ... ~ Z~Z  ~. 
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Define E~= PkY-"X z=p~z.Z~oE ", i.e. E~ is the pull-back in Fig 2. The map gk is 

defined as follows: 

.~..n 

\ g k  -~ n Ik 

{ \  , 
'~ X ~ n I Z~176 

, 

Fig. 2 

g~(O = (A(O, i(O). 

Note that Z~ofk is a fibre map since fk is; thus E~,= {(a,b)~Pk En X Zoo~"[ ik(a) 
= Z~(b)} .  Now ik is an H-isomorphism and ZooPkE" is simply connected; thus 

i k is also an H-isomorphism, and since i is a homology isomorphism so is gk. 

Since the whole construction is natural one gets a tower 

n i1 
~'~fl - +  " " ~ ' ~  ~ ~'~k -- 1 -"~ " " '~ '0  = Z o o  ~ n  

in which all maps are homology isomorphisms. We must show that properties 2.1 

(ii) and (iii) hold. But this is immediate from the corresponding properties of the 

acyclic decomposition, since APkE" is the fibre of E~, ~ Z=Z"; see Fig. 1 where A 

is as in [4]. 

PROOF OF UNIQUENESS. Using the functorial tower one gets Fig. 3. Then E~ 

(e) V' q 

Fig. 3 

may be taken as the "total pull-back." Since the maps E k ~EkU)are homology 

isomorphisms and induce isomorphism on N for j < k (compare [4, Th. 2.1 (iii), 

(iv)] and since the spaces are ]-simple for j > k, these maps are homotopy 

equivalent. 

4.1. REMARK. The construction given above is not a step-by-step construction 
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as given in [4]. In Section 8 we give another, inductive construction which shows 

exactly what homotopy groups and k-invariants come into the construction of 

Z~ out of PkZ". 

5. The properties of the invariants 

Here we prove two useful propositions: 

5.1. LEMMA Let X 2 be a simple H-2-sphere. Then rh(Z2)~crq AE  2. 

PROOF. Note that AX 2 is the fibre of Z12~ Z| ___ S 2. But since Z 2 is j-simple 

fo r j  > 1 so is AE 2 by [4, Th. 2.1]; thus by the [4, Uniqueness Theorem 4.2] the 

natural map A = AE2-- ,AK(nlE 3,1) is a homotopy equivalence. Thus one has 

in Fig. 4 a diagram of fibrations which, in homotopy, gives the exact ladder 

depicted in Fig. 5. 

_- ,, 

A = K(~,/) ,,- -- z~ K:~,/) 

Fig. 4 

Z --- ~,4, ,, r: :0 
II II 

He~ = ~A , 7 : .  ;-0 

Fig. 5 

But n is perfect and 7ClA is the universal central extension of ~ by H2rc (compare 

[5]). Thus r/8 in the center of rqA. 

PROOF OF PROPOSITION 2.6. This Proposition follows immediately from the 

Serre spectral sequence for the fibration 

II n 

F~-~Z~ : Xk-i 

for k > 2. Since H,pk is an isomorphism, and F k is (k - 1)-connected, one gets 

H~(Z~_ 1, 7~kFk) ~-- 0 for i = 0,1 which proves the proposition. As for k = 1, note 

that F1 is an acyclic space; in fact, it is A(~I, 1). Thus H : ~  = H2~2 = 0. 
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6. The automorphism of acycHc spaces 

For a given (n-2)-s tage acyclic space An-e, (or a given A 1 = A ( ~ ;  1) if 

n = 2) Theorems 3.1 and 3.2 classify fibrations 

An_ 2 --~ Xn_ 2 -+ S n 

A(~t, 1) --, ~;2 ._, S 2 

thus in fact computing rc~ Aut An-2  fo r j  > n - 1 and ~zs Aut A(oq, 1) for a l l j  >- 0. 

Here Aut X denotes the space of self homotopy equivalences of X. We start with 

the simpler case 3.2. 

6.1. PROOf Ot~ 3.2. We start with 3.2 (ii). Let H ~  = 0 (i = 1,2) and let c = ca 

be the center of ~. Given an element s c, we construct a simple homology 

2-sphere as follows: ~2 is the pull-back in Fig. 6 in which ;/: S 2 - ,  K § denotes the 

homotopy element which corresponds to ~ under the isomorphism 

re2 K+ ~ H2 K'~ -~ H 2 K  " c. 

2 

' 1 I 

S 2 rl , = Z . o K { o t / c , U = K  § 

Fig. 6 

The first two isomorphisms follow from the general properties of Z~o for spaces 

with perfect fundamental groups. Now, one has an exact sequence 0-~ c-~ 

o~/c ~ 1. Thus ~/c is perfect. The isomorphism H 2 K  = Hz(ot/c)  ~- " " c is g~ven by 

the corresponding exact sequence in homology 

H2~--, H2(~/c) -~ Ito(~/c, c) - ,  H ~  

since H: t  = 0 for / = 1,2 and Ho(0t/c, c) = c since the extension is central. Since 

the universal central extension of , t ic  is unique, it must be ct itself and thus 

*q Z~(F/) -~ ~. Cleady t/~ Xu~(F/) = ;/. This  proves (ii). To prove (i), the first c/aim is 

Lemma 5.1. As for the rest of(i), note that rq X 2 is always a quotient of ~1 X~ by 

the cyclic subgroup generated by an element of ccq : Z ~ ~1 ~ rrj Z 2 ~ 0 is exact. 

Thus one gets ~/cTz = n~ ]cz~. Now given a homology sphere X 2 one constructs 

the map ~.2 -+ K ( ~ / c )  and thus Fig. 7 which is clearly a pull-back diagram. Under 

the assumption one can construct a self equivalence 
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Z~K(a t /c ,  1) --} ZooK(~l/c, 1) 

which carries r /~ 2) to ~/(,y2), thus proving (i). 

123 

S 2 
rZE 

Fig. 7 

6.2. PROOF. OF 3.1. First note that 3.1 states for homology n-spheres n > 2, n 

a weaker result than Theorem 3.2 states for H - 2-spheres. The proof proceeds 

along the same line except that for K + one uses the complex Z~P,_2A,,_2 

~-Z~P~_2E ~ since P , - 2 A , - 2  = P , - 2  y-n. Note that it follows from [4] that 

APn_2A,_2 ~- A,_ 2. Thus for each (n - 2)-stage ~" with fibre A,_ 2 over Eo ~, one 

has a pull-back diagram, Fig. 8, derived from the Z~-completion of map E 

~ n - z  = ~/7-2 

z . p _2 znK 

3" Z,~Z ~ Z~ Pn-2 z'n--K § 

Fig. 8 

The main observation is: re, K + ~., H,  K + = 7r,_1 An-2. See 2.2 and 3.2 [4]. We 

leave it to the reader to check that only E ~ as above can be derived as a pull-back 

from K § in a unique fashion up to Aut (re,K+). Note that for any acyclic space X, 

H,+ 1 P, X ~ 0 and thus Z~Pr X is (r + 1)-connected. 

6.3. THE AUTOMORPIaISMS OF An. An immediate corollary to Theorems 3.1 and 

3.2 is: 

COROLLARY. Let A ,  be an acycIic space in which ~ A  t acts trivially on ~jA,, 

0 < n < j .  Let AutA,  be the space of  self homotopy equivalences of  A. Then 

i f  n > 1, there is map Aut A,  --* A n which induces isomorphism on nj for  

all j > n. I f  n = 1 (i.e. A t = A(al,  1)), the canonical acyclic space associated 

with tr = ntA(tr, 1)for  which Hia = 0, (i = 1,2):Aut A(a,1) is determined by a 
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pull-back diagram in Fig. 9, where ff'a is the Eilenberg-MacLane classifying 

space K(a, 1). 

Aut , 4 ( ~ I )  ~ A u t / N o  ~ 

A ( ~ / )  -~ Wo ~ 

Fig. 9 

Note that one has a fibration K ( c a , 1 ) ~ A u t  f f ' a ~ A u t  a, where ca is the 

center of  a. Thus z lAutA(a ,  1)~ ca and lrjAutA(a, 1) ~ rciA(a, 1) for all j > 1. 

The above fibre square gives strong ground to the feeling that the acyclic space 

A(a, 1) is the "correct" dual to the aspherical space K(a, 1). The homotopy 

groups of A(a, 1) were defined by some authors to be the higher algebraic K-groups 

of a ring R, when a is taken to be the Steinberg group St (R) of the ring R (compare 

Milnor [3], Quillen and S. Gersten). This is i n ~ ne with suggestions of Swan and 

Bass I-6] to define the higher K, by successively annihilating higher homology 

groups of St(R). Now let K + = Z~oK(GL(R), 1). It follows from Corollary 6.3 that 

the universal cover/~+ is homotopy equivalent to if 'AurA(St(R),  1). Thus the 

higher K-groups K, for n > 2 as defined above, are the groups of  homology 

n-sphere E" with ~IE"___ St(R). 

7. Construction of the (k+l) -s tage  for k > n - 2  

We now prove the existence Theorem 3.6. The uniqueness will follow easily. 

Given a n = rhEa-module ~, and given a k-stage E~ with k > n - 2 (or k > 1 

if n = 2), assume that Hi(rc,~ ) = 0 for i = 0, 1. Let the cocycle C k+2 be represented 

by the map in Fig. 10 where ~b:rc~Aut~ is the given action and where 

: = L ~(oc, k § 

Fig. 10 

LqS(~, n + 1) is a classifying space for cohomology with twisted ~b coefficient, (see 

[4, 5.1-1). Then by pulling back the space of "paths over K ( n , l ) "  one gets a 

fibration 
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K(~, k + 1) ~ E  

such that the natural action is ~, and c k+2 belongs to the obstruction class in 

H ~ + 2(IE~, e), to a cross section of p'. 

We now want to turn E into a (k + 1)-stage homology n-sphere. This is done by 

successively annihilating the higher homology of E. Note that for each fibration 

like p' with a fibre Eilenberg-MacLane n-space n > 1, one has an exact sequence 

Hl(n,~ ) ~ Hk+2E --~ Hk+2 B ~ Ho(n,o~ ) ~ Hk+ 1E ~ Hk+ 1B ~ 0 (B = Z~). 

Thus since Hi(n, ~) = 0 we get Hj E ~ HjB for all j < k + 2, but since k > n + 2, 

we see that E is an H - n-sphere in dim < k + 2. Thus H ~+1 (E,H,+iE) ,.~ Horn 

(Hn+iE , Hn+i E) for k +  2 - n > i > 1 since Ext(H,+~_IE, H,+iE ) ,.~ 0 (i > 1) 

because H,E ~ Z. Thus there is map E ~ K(Hk+3E, k + 3) which corresponds to 

the identity map in Hk+3(E,H~+3E).~Hom(Hk+aE, Hk+aE'). This map is 

moreover unique up to homotopy. Define E~+3 to be the fibre of that map; then 

it is easy to check that E~+.a has the same homology of the n-sphere in dim < k + 3. 

Thus one can define a tower E~ over E, and by taking E~',+ ~ to be lim._Ej', one gets 
~ k + l  n 

a homology isomorphism Ek+ 1 >~k. 
Clearly ck+2e hk+2(pk+l). It remains to be proved that cq+ 1 E~+ 1 g ~ as a n- 

group. But this follows by comparing E~+~ ~E~ with the map A Z~+~-~ A E~ 

via Fig. 1, and applying the existence theorem 1.4 in [4]. 

8. The relative aeyelic funetor 

In constructing Zk in the above section, we in fact turned the map Z"-~ PkE" 

into a homology isomorphism ~n ~ Z~, using the completion functor Zoo. Here we 

present a simpler construction which does not depend on Z~, is more explicit 

and enables one to gain hold on z,Z~. 

8.1. THEOREM. Let X be a connected space with HxX ~ O. Let X ~ Y be a 

map into another connected space Y. Then there exists, in a natural way, a 

commutative diagram, Fig. 11, with the following properties (compare [4, Th. 

2.1]: 

i) The map H, f  is an isomorphism. 
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f 
X ~-AY 

Y 
Fig. 11 
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ii) The map A Y ~  Y is universal with respect to maps X ~ K ~ Y, in 

which H,fl is an isomorphism (i.e., j factors uniquely throu#h i). 

iii) The functor A preserves fibre maps, and preserves the j-simplicity 

of  the space (i.e., i f  Y is j-simple so is AY). 

PROOF. Let Y~ ~ Y be the covering map which corresponds to P rqY, the 

maximal perfect subgroup of rq Y. Then one has a unique lifting X 41Y~ of s. 

Clearly, Hlf~ is an isomorphism of the trivial groups. Assume by induction that 

f , :  X ~ Y, has been defined and H J ,  is an isomorphism for j < n. Then we define 

f,': X ~ u by the pull-back diagram, Fig. 12. Here Z denotes the reduced free 

- APn+ IZYJZX) 

// I 
J 

/ I 
/ I / 

"Yn x Pn,  (ZYn/ZX) 
Fig. 12 

abelian group functor, P,+ 1 the (n + 1)-stage of the Postnikov tower and A the sim- 

plicial path functor. Note that since X maps to the base point in P.+I (ZY. /ZX) ,  

the map f .  lifts to f "  by: f ' (a )  = (f.(a), ,). 

We now claim that H j f" is an isomorphism for j < n and an epimorphism for 

j = n + 1. To see this note that P,+~ (ZY./ZX) has the homotopy type of 

K = K(H.+I(Yn, X), n + 1). Thus for the fibration Y, - ,  Y. ~ K one gets in Fig. 13 

an exact ladder, which proves our claim. 

HI?§ ~- HlT, l Yn 

0 -Hn+zY~-~-Hn+tY n 

Fig. 13 

. G+/Yn,X)  

. H.§ (Yn,XJ 

-~0 
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(n§ , / /  I 
i I 

I I 
/ ,i 

x  Yn' 

-APn§ e {zY/ /zx)  

cz ' /zx j  
Fig. 14 

One proceeds now to define Yn+ 1 by the pull-back diagram, Fig. 14, and prove 

by similar argument that HJ,+I  is an isomorphism for j  < n + 1. Now the space 

A Y  is defined as inverse limit 

A Y  = lim Y~. 
4-- 

n 

Clearly A has all the desired properties (compare [4, Th. 2.1]). 

9. Geometrical examples 

We start with the well-known Poincar~ H-sphere PS 3. This sphere can be 

derived as a space of orbits of the bi-icosahedral group I* [8] acting freely on the 

3-sphere, or alternatively as SO(3)/I where I is the icosahedral group. One may 

wonder what is the H-decomposition of E 3. This turns out to be a simple question 

since the universal cover of E 3 is S 3. 

9.1. PROPOSITION. Let E" (n > 2)be any H-sphere. I f  the universal cover of 

~.~ is S ~ then Y~" is a simple H-sphere, i.e. ~.~ ,.. E~. 

PROOF. One examines Fig. 15 in which S" denotes the space Z~oE" which has 

the homotopy type of the n-sphere, 7~ = n~Y~". Since Z~K(n,  1) is simply connected, 

and rc~Aut H.S" is trivial, S"--*F must be an H-isomorphism and thus equivalence. 

Thus A' -% AK(rc, 1), which proves the claim. (A denotes the acyclic function [4]) 

S n 

l 
F 

A'  ~ AK{rr ,  I )  

_- n ~ K(V, I )  

- zooK{ ,/} 

Fig. 15 

Now, H3I* -~ 7/12o, the cyclic group of order 120 (since 1I*] = 120). Thus 

n2A(I*, 1) = 7/120 and clearly r/(PS a) must be a generator. Thus one has: 
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9.2. COROLLARY. Let I* act freely on S 3. Then Sa /I* ~ 7:az=group of  units of  

~120" 

9.3 MANIFOLDS. The fundamental group of a closed, compact, smooth n- 

manifold (which is an) H-sphere for n > 4 was characterized by Kervaire to be 

any finitely related group G with H 1G = HEG = 0. It is natural to seek a characteriza- 

tion of the higher homotopy groups of n-manifolds which are H-spheres. Likewise, 

Kervaire characterized the possible fundamental group of a higher knot. Note 

that the complement of a knot is a homology 1-sphere (an H-circle). C.T.C. Wall 

observed [7] that the homotopy type of the complement of a knot: S m-2 ~ S m 

is characterized by a purely homotopy theoretical property, up to the middle 

dimension: 

9.4. THEOREM (Wall, Kervaire). Let (K,L) be a C.W. pair of  dimension r and 

with finite skeletons, such that K = LUse  2 and K is contractible. Then i f  

m > 2r - 1, m > 5 there is a smooth imbeddin9 orS  m-2 in S m, with complement 

C, and an ( m -  r)-connected map ~: C ~ L. 

Notice that L is an almost arbitrary homology 1-sphere of dimension r, the 

only restrictions are finiteness of skeletons and that rolL has an element ~ whose 

conjugates generate the whole group, (symbolically w(rcxL) = 1). 

Similarly, one can easily prove: 

9.5. PROPOSITION. Let A be a finite C.W. complex of  dimension r > 2 such that 

tfft, A ,~ O. Then there is a smooth closed manifold M n for  n > 2r + 1, which is 

an H - n-sphere and an (r - 1)-equivalence A --+ M". 

Thus one can obtain knots and manifolds which are H-spheres by constructing 

certain finite complexes. In previous papers we showed how to construct all 

possible acyclic space. However, every (possibly infinite dimensional) locally 

finite acyclic space gives a finite one as follows: 

9.6. PROPOSmON. Let A be an acyclic C.W. complex with finite skeletons 

A d (d > 0). Then for all d > 2 there is a finite acyclic complex F and a (d -1) -  

connected map A d-", F. 

PROOF. The d-skeleton A d has vanishing homology through dimension (d - 1); 

in general, HdA d ~ 0 but one always has that the map ndAd ~ HdA d is surjective. 

To see this, note that coker (h) = HdPd- IA~, where Pd- 1A~ is the (d - 1)-Postnikov 

stage of A d. This is a well-known corollary to the Postnikov tower. Now this 
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general formula for the cokernel of a Hurewicz map implies that H~Pn_ 1A ,~ O. 

But clearly, Pn_ 1A --~ P~-iAa. We thus can annihilate HjAa by adding (d + l)-cells 

to get F = Aa w e ~+~ L) ... e ~*~ with /4.F ~ 0. F is certainly finite, and has the 

same ( d -  1)-type as A. 

Propositions 9.5 and 9.6 together with the classification of acyclic spaces given 

in [4], combine to generalize the Kervaire theorem about possible fundamental 

groups of a manifold-H-sphere, and to give complete classification of their 

homotopy type "up to the middle dimension". 

Proposition 9.4 can likewise be used to construct pairs (K, L) as in Proposition 

8.4, for which the fibre of L ~  S', the given H-isomorphism, is F. One simply 

takes a Kervaire knot-group, i.e. a finitely presented group G with H~G = Z ,  

H2G ~ 0 and w(G) = 1 for which HI[G,G ] ~ 0 where [G,G] is the commutator 

subgroup of G. Then H:[G G] = 0. Thus one can take arbitrary A with nlA 

[G, G] and construct the mapping torus of a map A ~ A with induce on nl the 

natural action of Z on [G, G]. Thus, up to the middle dimension one can weaken 

the Kervaire assumption nlK = Z to read [n l ,n l ]  is perfect. A more extensive 

discussion of the homology circle problem will be given in a future paper. 
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